在编写教案时,要根据实际的教学进度,合理安排教学资源和材料,提供丰富多样的学习体验,编写有趣味性的教案可以增加学生的学习积极性和参与度,下面是笔笔范文网小编为您分享的方程数学教案6篇,感谢您的参阅。
方程数学教案篇1
教学目标:
1、理解等式的基本性质一,并能较熟练地运用它解形如x+a=b的方程。
2、能较为熟练地运用形如x+a=b的方程解决简单的实际问题。
3、初步理解方程的解、解方程的含义,会检验给出的未知数的值是不是某方程的解。
4、培养学生规范书写和自觉检验的好习惯。
教学重点:
1、 对等式的基本性质一的.理解和运用。
2、 掌握解形如x+a=b的方程的依据、步骤和书写格式。
3、 能较为熟练地运用形如x+a=b的方程解决简单的实际问题。
教学难点:
1、 掌握解形如x+a=b的方程的依据、步骤和书写格式。
2、 较为熟练地运用形如x+a=b的方程解决简单的实际问题。
教学过程:
教学时由复习方程的意义入手,在出示情境图后提出问题,学生最先想到的是算术方法,此时引导:你能列方程解决这一问题吗?在列出方程600+x=860
后,怎样求x呢?在学生渴望解决这一问题的内在需求的驱使下,展开合作探索活动。
在教学等式的基本性质时,可利用实物演示,通过提问:怎样变换,能使天平仍然保持平衡呢?,以引导学生思考,启发学生把两组图的内容归纳成一句话。这样,及时引导学生超脱实例的具体性,实现必要的抽象概括。
这时就可以让学生自己思考、探索x的值的求法,然后在小组讨论后汇报。学生在陈述自己的想法时,不仅要说出自己是怎样推算的,还要请学生说出这样推算的理由。在这一过程中,要特别强调解方程的每一步得到的都是等式,而不是递等式。
教学中还要重视对学生书写的要求,初学时,可要求学生等号对齐。方程两边同时减去一个数的计算过程,开始练习时也要求学生写出来,待熟练之后再简写。无论是解方程还是检验,都要从一开始就强化书写规范,以发挥首次感知先入为主的强势效应,促进良好的书写习惯的形成。
最后引出方程的解和解方程的概念时,要强调:方程的解是一个数,而解方程是一个过程,帮助学生理解、区别这两个概念。
模式方法:观察――实验――讨论――交流――概括结论
作业设计:自主练习1-3题。
讨论要点
1、 教学时,要充分利用天平,让学生通过观察、实验、讨论、交流,帮助学生理解等式的基本性质一。
2、 教学时,要关注学生的算术思维向方程思维的转变。
3、 在检验的问题上,要注重引导学生由算术法的验算向方程法的检验转变。
4、 教学时,要加大引领力度,充分发挥教师的作用。一要做好学生解决问题的思维方式的引领,进一步拓宽学生解决问题的渠道,提高学生解决问题的能力。二是对解方程以及列方程解决问题的思路、步骤及格式的引领。
活动总结
本次教研活动,使老师们更加清楚地了解学生已有的知识基础,较为准确地把握教学的重点和难点。设计较为实际的教学环节,降低学生学习的难度,同时也为教师在教学中围绕重点、突破难点指明了方向。
方程数学教案篇2
教材内容:
人教版五年级上册数学广角植树问题p106页例1
教学目标:
1、通过猜测、验证等数学探究活动,使学生发现一条线段上两端都栽的植树问题的规律,构建数学模型,解决实际生活中的问题。
2、培养学生通过“化繁为简”从简单问题中探索规律找出解决问题方法的能力,初步培养学生的模型思想和化归思想。
3、通过合作交流,感受数学在生活中的的应用,体验学习成功的乐趣。
教学重点:
运用数形结合、一一对应建构植树问题模型,并灵活地解决植树问题。
教学难点:
“一一对应思想”的运用
教学准备:
课件、10根小棒、尺子、白纸等。
【教学过程】:
一、创设情境引入
1、师:今天张老师和大家一起学习,你们欢迎吗?怎么欢迎?(学生鼓掌)
师:手不但能表示情感,还藏着数学奥秘呢!伸开你的右手,你找到了数字几?
生:5
师:5是什么?
生:5个手指
师:就是手指数,那还能发现哪个数?
生:4个空隙
师:你能指给大家看看吗?
师:像这样每两个手指之间的空隙,在数学上叫做间隔。(板书:间隔)
师:4根手指几个间隔?三根呢?
2、找一找生活中还有哪些间隔现象?(课件出示)今天我们就一起来研究与间隔有关的一类有趣的数学问题:植树问题。(板书课题)
二、发现规律
1、课件出示:同学们要在全长500米长的小路的.一边植树,每隔5米栽一棵树。(两端都栽)一共要栽多少棵数?
(1)你获得了哪些数学信息?问题是什么?“一边”“每隔5米”、“两端都栽”什么意思?(解释“一边”、“500米”是全长和“每隔5米”是间距)
(2)那么我们需要种多少棵树呢?
(3)请同学猜一猜、算一算
预设:100÷5=20?100÷5+1=21?100÷5-1=19
(4)引导验证:现在有不同的猜想,到底谁的对呢?怎么办?我们能不能想一个办法验证呢?如果我们画图来验证,你觉得好不好?(太麻烦)
三、建立数学模型
1、化繁为??
师:我们可以先从简单数据开始研究。我们可以把这里的总长500米改成5米、10米、15米20米、30米,请你选一个来摆一摆、画一画,数一数、找一找规律验证下吧。
出示活动要求:
(1)结合生活情境,独立用学具摆一摆,也可以用画一画、找一找、算一算的办法研究两端都栽的情况下,棵数与间隔数的关系,有困难的同学也可以同桌合作。
(2)完成后,在小组内说一说你的想法。
2、全班交流,完成表格。
3、引导总结规律,完成板书:
小结:1棵树对应1个间隔,最后一棵对应的间隔没有了,棵数比间隔数多1。你再仔细观察,还有什么新发现?
板书:两端都栽:全长÷间隔长=间隔数
间隔数+1=棵树
棵数-1=间隔树
师:如果老师下面空格里的全长填上40米,那么你能不画图列式得出答案吗?100米呢?
预设:40÷5=8?8+1=9(解释8表示间隔数)
4、回归应用
(1)师:那回到原来的题目全长改成500米,会算吗?那么我把数字再放大变成1000米,怎么做?
(2)全长10000米,每隔10米种一棵(两端都种),要种多少棵?
5、小结:其实今天的学习我们用了一个非常重要的学习方法,(板书:以小见大或化繁为简)也就是像这样遇到数据比较大或比较繁琐的问题时我们可以用一些小数据、一个简单的草图找到规律来解决。
四、联系生活,解决问题
1、出示:为美化校园环境,建安小学准备在一条长10米的小路两旁,每隔2米放一盆花,(两端都放)一共可放多少盆花?
学生审题后独立完成。
交流提问:这个问题也是植树问题吗?为什么?生活中还有类似的问题吗?
师:这些树、花盆、小旗等都可以用点来表示,植树问题就是研究这些点和间隔关系的问题。
2、路的一边从头到尾摆了6盆花,如果每两盆花之间在插一面小旗,一边能插几面小旗?两边呢?
3、同学们排成一队去参观,从头到尾一共12人,每两个人之间的距离是2米,那么这列队伍长是多少米?
五、课堂总结:
这节课学了什么?有什么收获?
六、拓展延伸:
出示30米,每隔5米两端都种,学生读题。出示房子,师:现在还是两端都种吗?
预设:只种了一端
师:现在间隔数和棵数有什么关系呢?
再出示一个房子,师:现在还是只种一端吗?
预设:两端都不种
师:那间隔数和棵数又有什么关系呢?同学们下课以后可以用我们今天学到的方法研究一下。
板书设计:
植树问题:两端都栽:全长÷间隔长=间隔数
间隔数+1=棵树
棵数-1=间隔树
方程数学教案篇3
教学目标:
知识与技能:使学生理解并掌握小数乘以整数的计算方法及算理。
过程与方法:经历将小数乘整数转化为整数乘整数的过程,使学生认识到转化的方法是学习新知识的工具。
情感、态度与价值观:感受小数乘法在生活中的广泛应用。
教学重点:
理解并掌握小数乘整数的算理,学会转化。
教学难点:
能够运用算理进行小数乘整数的计算。
教学方法:
迁移类推,引导发现,自主探索,合作交流。
教学准备:
多媒体。
教学过程
一、情境导入
1.谈话:同学们都喜欢哪些运动呢?
(生回答自己喜欢的运动……)
2.导入:是啊,多参加户外运动,有利于身体健康。老师也经常参加户外运动,放风筝就是我的最爱。下课咱们一起去放风筝好吗?
3.提问:但放风筝之前要先去买风筝,所以咱们就先去买几只风筝吧!(展示教材第2页例l情境图)从图中你知道了哪些信息?
引导学生观察并思考:图中小明他们想买3个3.5元的风筝需要多少钱?你会列式吗?
指学生回答:3.5x3,教师板书:3.5x3。
4.探索:观察这一道算式,它与我们以前学过的乘法算式有什么不同?
生观察后回答:这道算式的因数有小数。
5.揭题:以前我们学习的乘法都是整数乘整数,今天的算式中却出现了小数,这就是今天我们要研究的小数乘整数。(板书课题:小数乘整数)
二、互动新授
1.初步探究竖式计算的方法。
(1)引导学生准确算出一共需要多少钱?学生独立计算,并在小组内交流自己的想法。(师走到学生中,了解学生参与讨论的情况。)
(2)让学生说说自己的想法。
指名汇报,教师根据学生叙述板书,学生可能想出下面几种不同的方法:
方法1:
连加。展示:3.5+3.5+3.5=10.5(元)
师:你是怎么想的?
生:3.5x3就表示3个3.5相加,所以可以用乘法计算。(师板书意义)
方法2:化成元、角、分计算,先算整元,再算整角,最后相加。3元x3=9元,5角x3=1元5角,9元+1元5角=10元5角,即3.5x3=10.5(元)。
方法3:把3.5元看作35角,则35角x3=105角=10.5元。
(3)追问:刚才同学们开动脑筋想出了这么多方法,真了不起。如果要用竖式计算,你会算吗?请同学们想一想,并与同桌讨论:如何列竖式计算3.5x37
引导:出示(边说边演示):
35角
x3
105角
3.5元
x3
10.5元
强调:我们可以把3.5元转化成35角,用35角乘3得105角,再把105角转化成10.5元。注意在列竖式时因数的末尾要对齐。
2.自主探究,进一步理解算理,掌握计算方法。
(1)教师出示算式:0.72x5。
师:同学们看0.72不是钱数了,没有元、角、分这样的单位了,还能不能计算出结果呢?请同学们独立思考,然后在小组内交流计算方法。
(2)学生汇报演示。
可能有两种方法:加法和乘法。根据学生的汇报,展示这两种方法。
(3)比较:(见板书设计)
引导:请同学们比较一下这两种方法,你喜欢哪一种呢,为什么?
生:用乘法比较简便。
(4)追问:仔细观察乘法算式,谁给大家解释一下,你是怎样把乘数转化成整数的?
生:先把0.72小数点向右移动2位转化成72x5=360,得出结果后再把积的小数点向左移动两位就是3.6。
质疑:既然把所得积的小数点向左移动两位,那这个积就应该是一个两位小数,为什么现在只有一位呢?
生:小数的末尾添上或去掉0,小数的大小不变,所以积末尾的0可以直接去掉。
(5)注意:同学们在计算小数乘整数时,想到了用转化的方法把小数乘法转化成整数乘法计算。那么,谁能和大家说说小数乘整数应该怎样计算,计算时应注意什么呢?
指导学生归纳出:计算小数乘整数的乘法,要先把小数看作整数来乘,乘完以后,看因数扩大了多少倍,再把乘出的积缩小相同的倍数。当积的末尾有“o”时,应先点上小数点,再把“0”去掉。
师:(出示教材第2页情境图)我们通过解决买风筝的问题,认识并学会了小数乘整数的计算方法。我们看图中还有几种不同的风筝,如果买3个其他形状的,需要多少钱呢?能不能很快地算出来?
学生独立计算,汇报交流。
师:同学们顺利地买完了风筝,那就让我们就一起把风筝放飞吧!
三、巩固拓展
1.教材第3页做一做第1题
想一想:小数乘整数与整数乘整数有什么不同?
2.教材第3页做一做第2题
同桌之间相互谈谈是怎样点小数点的。
3.指名板演教材第3页做一做第3题
4.不用计算,你能直接说出下面算式的结果吗?
148x23=3404
14.8x23=()1.48x23=()0.148x23=()()x()=34.04
四、课堂小结。同学们,这节课你们都学会了哪些知识?(学生自由发表想法)
作业:教材第4页练习练习一第1、2、3题。
第二课时
课题:第一单元:小数乘法
教学内容:教材第4页练习一第3、4、5题。
教学目标:
知识与技能:
1.能熟练掌握小数乘整数的算理与算法。
2.会运用小数乘整数解决一些实际问题。
过程与方法:经历小数乘整数的练习过程,培养学生的运算能力,体现数学知识的运用价值。
情感、态度与价值观:感受数学和生活之间的内在联系,激发学生的`学习兴趣,培养热爱生活、热爱数学的良好情感,体验学习的成功与快乐。
教学重点:巩固小数乘整数的计算方法。
教学难点:运用小数乘整数解决实际问题。
教学方法:设置数学问题,引导学生练习;练习体验,小组交流讨论。
教学准备:口算卡片、多媒体。
教学过程
一、谈话导入
1.谈话:上节课我们学习了什么内容?学生自己回忆,个别提问,其他同学补充,师生共同总结小数乘整数的计算方法:小数乘整数,先按照整数乘法的计算方法计算,再看因数中有几位小数,就从积的右边起数出几位点上小数点。
2.导入:同学们学习了小数乘整数的算法,这节课我们的主要任务是巩固练习小数乘整数。(板书课题)
二、基础练习
1.口算练习。
⑴看谁算得又快又准。
6.5x10=0.56x100=3.78x100=
3.215x100=0.8x10=4.08x100=
⑵4.1x9=1.2x3=5x5.8=0.28x3=16.5x4=0.796x7=
教师出示算式卡片,指名口算。让学生说一说是怎样算的。
2.说一说
4.8+4.8+4.8+4.8用加法的简便算法表示是()x().表示求()是多少,求积时可看成()x(),先得出积(),再从右起点出()位小数,得()。
3.笔算练习。
0.32x47=1.6x52=64x0.25=1.37x21=
教师指名板演,学生独立练习,然后集体订正。
三、拓展提高
1.大家在逛商店遇见特卖会时是不是都有点心动?小刚也遇见了特卖会,那你帮他算算他至少要带多少钱才够?
某商店牛奶搞特卖活动,每盒牛奶1.4元,买四赠一。小刚要买20盒牛奶,至少要带多少钱?
分析:“买四赠一”的意思就是买5盒牛奶付4盒的钱数,求买20盒需要多少钱,就是求实际应付的钱数。
方法一:先求出20盒里有多少个(4+1)盒,再求出买4盒多少钱,最后求出一共需多少钱。
20÷(4+1)=4(个)1.4x4x4=22.4(元)
方法二:先求出20盒中一共有多少盒是需付钱的,再求出买20盒一共需多少钱。
20÷(4+1)x4=16(盒)1.4x16=22.4(元)
2.运用因数的变化引起积的变化规律巧计算
根据24x25=600,在()里填上适当的数。
(1)240x25=()
(2)2.4x25=()
(3)()x25=0.6
思路导引
(1)24x25=600(1)24x25=600
↓x10↓不变↓x10↓÷10↓不变↓÷10
方程数学教案篇4
教学目标:
1、通过天平游戏,探索等式两边都加上(或减去)同一个数,等式仍然成立的性质。
2、利用探索发现的等式的性质,解决简单的方程。
3、经历了从生活情境的方程模型的建构过程。
4、通过探究等式的性质,进一步感受数学与生活之间的密切联系,激发学生学习数学的兴趣。
教学重难点:
重点:通过天平游戏,帮助数学理解等式性质,等式两边都加上(或减去)同一个数,等式仍然成立的性质。并据此解简单的方程。
难点:推导等式性质(一)。
教学准备:
一架天平、课件及班班通
教学过程:
一、创设情境,以情激趣
师:同学们,你们玩过跷跷板吗?两只松鼠正玩着跷跷板。突然来了一只大灰熊占了其中一边,结果跷跷板不动了。你们看有什么办法?
学生讨论纷纷。
师:说得很好。今天我们就是在类似跷跷板的天平上做游戏,看看我们从中有什么发现?
二、运用教具,探究新知
(一)等式两边都加上一个数
1、课件出示天平
怎样看出天平平衡?如果天平平衡,则说明什么?
学生回答。
2、出示摆有砝码的天平
操作、演示、讨论、板书:
5=5 5+2=5+2
x=10 x+5=15
观察等式,发现什么规律?
3、探索规律
初次感知:等式两边都加上同一个数,等式仍然成立。
再次感知:举例验证。
(二)等式两边都减去同一个数
观察课件,你又发现了什么?
学生汇报师板书:
x+2=10
x+2-2=10-2
x =8
(三)运用规律,解方程
三、巩固练习
1、完成课本68页“练一练”第2题
先说出数量关系,再列式解答。
2、小组合作完成69页“练一练”第3题。
完成后汇报,集体订正。
四、课堂小结
这节课你学到了什么?学生交流总结。
板书设计: 解方程(一)
x+2=10
解: x+2-2=10-2 ( 方程两边都减去2)
x =8
方程数学教案篇5
学习内容:人教版五年级上册p57-59页
学习目标:
1、通过操作、演示,进一步理解等式的性式,并能用等式的性质解简单的方程,在解方程的过程中,初步理解方程的解与解方程。
2、通过创设情境,经历从具体抽象为代数问题的过程,渗透代数化思想,并通过验算,促进良好学习习惯的养成。
3、在观察、猜想、验证等数学活动中,发展学生的数学素养。
学习重点:用等式的的性质解方程,理解算理
学习过程:
一、创设情境,引出方程
1、研究例1:
猜球游戏:出示一个乒乓球盒,猜里面有几个球?引导学生用字母来表示球数?
导语:要想精确知道多少个球?再给大家一些信息(课件出示:天平左边盒子和二个球,右边有七个球)
设问:能用一个方程来表示吗?板书x+2=6
二、探究算理
设问:你们知道x等于多少吗?那这个答案4你们是怎么想出来的吗?说说你们的想法?
预设:a、7-4=2;b、4+2=7,所以x=4,c、左右二边都拿掉二个乒乓球,右边还剩下4个,所以x=4
研究第三种想法:设问:左右同时拿个二个乒乓球天平会怎么样?
学生上台用天平演示
请学生们把刚才的过程用式子表示出来,板书:x+2-2=6-2
追问:你怎么想到是拿到二个乒乓球,而不是拿到一个或者三个呢?
尝试验算:板书:左边=4+2=6=右边,所以我们就说x=4是方程的解,板书方程的解,尝试说说方程的解;刚才我们求方程的解的过程叫做解方程。(可以自学书本)
讲解解方程的书写格式(与天平相对应)
小结:刚才我们用了好多方法来解方程,重点研究了第三种解方程的方法,这种方法我们用到了什么知识?课件再次演示后,得出方程的两边同时去掉相同的数,左右两边仍相等。
尝试:解方程:x-1=3,
想一想:如果要用天平的乒乓球,如何来表示出这个方程?
指名摆一摆,学生尝试解决,并用操作来验证
2、研究例2:3x=18
学生尝试后出示:3x÷3=12÷3
用小棒操作后交流后想法:方程的左右二同时除以一个相同的数(零除外),左右二边仍旧相等。
展示,课件演示后小结:方程的左右二边可以同时除以相同的数(零除外),左右二边仍旧相等,追问得到还可以同时乘以一个相同的数
总结:解方程时,我们都是想使方程的一边只剩下一个x,而且在这个过程中还要使方程保持平衡,我们可以采用……
三、巩固练习:
1、p59页1
2、后面括号中哪个是x的值是方程的解?
(1)x+32=76 (x=44, x=108)
(2)12-x=4 (x=16, x=8)
3、解方程
p59页第2题的前面四题,要求口头验算
四、总结:
五、机动:研究练习2中的第二题,怎么用今天的方法来解方程。
让"天平"植入解方程中
?解简易方程》是数与代数领域中的一个重要内容,是“代数”教学的起始单元,对于渗透与发展学生的代数化思想有着极其重要的作用。本节课教材在编写上为了实现中小学的衔接,改变了以往利用“加减法逆运算和乘除法逆运算”而是利用天平原理即等式的性质来解方程,由于学生在前面已经积累了大量的感性经验(逆运算)来解方程,对于今天运用天平的原理来解方程,造成了极大的干扰,所以在本节课中我力图直观,让学生在直观的操作与演示中自主建构。同时借助观察、操作、猜想与验证,一方面来促使学生进一步理解等式的性质,能利用等式的性质来解方程,同时也让学生抽象方程,解释算理中来经历代数的过程,发展学生的数感及数学素养。
1、在具体情境中理解算理,经历代数的过程。
新课程在数与代数的编排中最大的变化是取消了单独的应用题编排,而是把应用与计算紧密的结合起来编排,每一个内容都是以主题图的形式来呈现,主要的是目的是让学生在具休的情境中理解算理,同时也在计算教学中培养学生的应用意识。本节课属于典型的计算课,所以算理与算法是二条主线,今天的算法主要是突破学生原有的认知,能够利用天平的原理来解方程,所以理解算理,让学生体验到解方程只要使天平的一边剩下一个未知数,但要在这个变化中必须使天平保持平衡,可以通过在天平的左右二边同时加上、减去、乘以或者除以相同的数是本节课的重点。我通过创设情境,通过天平上的乒乓球的移动和补凑,来理解算理,而后利用小棒和棋子自己来解释说明算理,突显出本节课的重点。同时在情境的创设中,通过猜球,与天平的呈现信息,让学生经历由直观的生活抽象为化数化的过程,从中渗透化数化的思想。
2、在直观操作中掌握方法,发展数学素养。
新课程标准指出“学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内 容要有利于学生主动地进行观察、实验、猜测、验证、推理与交流等数学活动,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。”在本节课中,通过充分的直观,利用学生熟悉的乒乓球、小棒等素材,力图把方程建构于天平之中,通过导入时从直观到抽象,再到尝试时从抽象的式子分别直观的乒乓球与小棒来表示,打通天平与方程之间的关系,在学生的头脑中建立深刻的模像。同时,在让学生用自己的生活,用自己的图画,用自己的操作解释、验证中发展学生的数学素养。
二点困惑:
1、纵观学生的起点,他们已经具有丰富的生活经验与知识背景来解简单的方程,所以在教学中运用“逆运算”来解方程对于采用天平的原理来解方程造成了相当的冲突,部分学生虽然对于运用天平原理来解方程已经十分理解,但他们还是不愿意用这种方法,主要的原因是他们体验不到这种方法的优越性,所以如何在本节课中让学生体验到天平原理的优越性,从而自愿的采用这种方法,没有好的策略?
2、教材中回避了a-x=b与a/x=b二种方程,但在实践中经常要碰到,教师如何来解决这个问题?
一点遗憾:这节课在构思加入了大量的操作活动和直观材料,主要的目的是让学生解方程的过程中在学生的头脑中植入天平,并给学生以自我解释与验证的机会,但操作的作用在每一次实践中都没有得到最大化的发挥,如何来提高操作的效性,让操作的目标更明确,是以后这节课研讨中重点商切的问题。
方程数学教案篇6
第11课时 复习课
教学目标:
知识目标:通过复习,加深一元一次方程、方程的解等概念的了解,会根据具体问题中的数量关系列出方程并求解。
能力目标:培养学生运用数学知识解决实际问题的能力。
情感目标:让学生领悟数学在解决实际问题中的价值。教学重点:
一元一次方程的解法和应用。
教学过程:
一、本章知识回顾:
1.有关概念:
(1)方程:含有未知数的等式叫做方程。
注意:方程必须满足两个条件:①含有未知数;②是等式。(2)方程的解:使方程左右两边相等的未知数的值叫做方程的解。
(3)一元一次方程:只含有一个未知数并且未知数的式子是整式,未知数的次数是1.注意:判断一个方程是否是一元一次方程,满足三个条件:①只含有一个未知数;②未知数的次数是1;③未知数的系数不为0.(4)方程的简单变形规则:
①方程两边都加上或减去同一个数或同一个整式,方程的解不变。
②方程两边都乘以或除以同一个不为0的数,方程的解不变。
(5)移项:把等式一边的某一项改变符号后移到另一边,方程的解不变。
2.解一元一次方程的步骤:
①去分母;②去括号;③移项;④合并同类项; ⑤系数化为列一元一次方程解应用题的步骤: ① 审:弄清题意,分清已知量和未知量,明确个数量间的关系; ② 设:设出未知数; ③ 列:根据题中的等量关系列出方程; ④ 解:求出方程的解;
⑤ 答:检验所求的解是否符合题意,并写出答案。
二、运用知识,训练能力
1.下列方程中,哪些是一元一次方程,哪些不是?并说明理由。
(1)4+5x=11
(2)x+2y=5
(3)x2-5x+6=0
(4)1?xx=3
(5)x?1x2+3=1 2,已知方程2xm+1+3=5是一元一次方程,则m= --------- 3.解方程:x?33-x?12=某人乘船由a地顺流而下到b地,然后又逆流而上到c地,共乘船4小时,已知船在静水中的速度是每小时千米,水流的速度是每小时千米。若两地相距10千米,求两地的距离。
解:设两地的距离为x千米,因c地位置没有确定,所以需对c地位置进行分类讨论:
(1) 当c地在两地之间时,由题意列方程得:------------------------------,解得--------------。
(2) 当c地在两地之外时,由题意列方程得:------------------------------,解得--------------。
故两地的距离为--------------------。 5.小亮是一名七年级的学生,一次对方程
2x?1x4-?m4= -1去分母时,由于粗心,方程右边的-1没有乘4而得到错解x=3,你能由此判断出m的值吗?如果能,请求出此方程正确的解。
三、合作探究,解决问题
复习题 4、5、14、17
通过生生、师生合作,共同完成。
四、畅谈收获,分享成果
通过本节课的复习,你又有哪些新的收获?
五、布置作业
复习题
2、
3、
9 板书设计
复习课
一、本章重点知识回顾: 1.有关概念: 2.解方程的步骤:
3.列方程解应用题的步骤:
二、练习:
教后反思
方程数学教案6篇相关文章:
★ 六上劳动教案6篇