因数和倍数的教案6篇

时间:
Surplus
分享
下载本文

一份优秀的教案能够让课堂教学事半功倍,通过详细的教案,教师们可以有效地评估教学效果,下面是笔笔范文网小编为您分享的因数和倍数的教案6篇,感谢您的参阅。

因数和倍数的教案6篇

因数和倍数的教案篇1

在四年级(下册)教材里,学生已经建立了倍数和因数的概念,会找10以内自然数的倍数,100以内自然数的因数。本单元继续教学倍数和因数的知识,要理解公倍数、最小公倍数和公因数、最大公因数的意义,学会找两个数的最小公倍数和最大公因数的方法。为以后进行通分、约分和分数四则计算作准备。全单元的教学内容分三部分编排。

第22~25页教学公倍数。主要是两个数的公倍数、最小公倍数的意义,求最小公倍数的方法。

第26~31页教学公因数。包括两个数的公因数、最大公因数的意义,求最大公因数的方法。在练习五里还安排了最小公倍数与最大公因数的比较。

第32~36页实践与综合应用。利用邮政编码、身份证号码等实例,教学用数字编码表示信息。

在“你知道吗”里,介绍了我国古代曾经用“辗转相除法”求最大公因数,也介绍了现代人们经常用“短除法”求两个数的最大公因数和最小公倍数。在阅读这材料后,如果学生愿意用短除法求两个数的最大公因数或最小公倍数,是允许的。但是,不要求全体学生掌握和使用短除法。编排的一道思考题,是可以用公因数知识解决的实际问题。

1?在现实的情境中教学概念,让学生通过操作领会公倍数、公因数的含义。

例1教学公倍数和最小公倍数,例3教学公因数和最大公因数,都是形成新的数学概念,都让学生在操作活动中领会概念的含义。

例1先用长3厘米、宽2厘米的长方形纸片,分别铺边长6厘米和8厘米的正方形,发现正好铺满边长6厘米的正方形,不能正好铺满边长8厘米的正方形,并从长方形纸片的长、宽和正方形边长的关系,对铺满和不能铺满的原因作出解释。再想像这张长方形纸片还能正好铺满哪些正方形,从倍数的角度规律,为形成新的数学概念积累丰富的感性材料。然后揭示公倍数与最小公倍数的含义,把感性认识提升成理性认识。

教材选择长方形纸片铺正方形的活动教学公倍数,是因为这一活动能吸引学生发现和提出问题,能引导学生思考。学生用同一张长方形纸片铺两个不同的正方形,面对出现的两种结果,会提出“为什么有时正好铺满、有时不能”,“什么时候正好铺满、什么时候不能”这些有研究价值的问题。他们沿着正方形的边铺长方形纸片,就会想到正好铺满与不能正好铺满的.原因可能和边长有关,于是产生进一步研究正方形边长和长方形长、宽之间关系的愿望。

分析正方形的边长和长方形长、宽之间的关系,按学生的认知规律,设计成两个层次: 第一个层次联系 铺的过程与结果,从两个正方形的边长除以长方形的长、宽没有余数和有余数的层面上,体会正好铺满与不能正好铺满的原因。第二个层次根据正好铺满边长6厘米的正方形、不能正好铺满边长8厘米的正方形的经验,联想还能正好铺满边长是几厘米的正方形。先找到这些正方形,把它们的边长从小到大排列,知道这样的正方形有无数多个。再用“既是2的倍数,又是3的倍数”概括地描述这些正方形边长的特征。显然,前一层次形象思维的成分较大,思考难度较小,对后一层次的抽象认识有重要的支持作用。

让学生在现实情境中,通过活动领悟公倍数的含义,不仅体现在例题的教学中,还落实到练习里。第23页“练一练”在2的倍数上画“?”,在5的倍数上画“○”。从数表里的10、20、30三个数既画了“?”又画了“○”,体会它们既是2的倍数,又是5的倍数,是2和5的公倍数。练习四第4、7、8题都是与公倍数有关的实际问题,让学生通过涂颜色、填表格、圈日期等活动体会公倍数的含义。

例3教学公因数、最大公因数的含义,也通过“铺”的活动组织教学。与例1不同的是,例3用2张边长不同的正方形纸片分别去铺同一个长方形,是形成公因数概念的需要。例题编写和练习编排与教学公倍数相似,这里不再重复。

2?突出概念的内涵、外延,让学生准确理解概念。

概念的内涵是指这个概念所反映的一切对象的共同的本质属性。公倍数是几个数公有的倍数,公因数是几个数公有的因数,可见“几个数公有的”是公倍数和公因数这两个概念的本质属性。在倍数、因数的基础上教学公倍数、公因数,关键在于突出“公有”的含义。

教材用“既是……又是……”的描述,让学生理解“公有”的意思。例1先联系长3厘米、宽2厘米的长方形纸片正好铺满边长6厘米、12厘米、24厘米……的正方形这些现象,从正方形的边长分别除以长方形纸的长和宽都没有余数,得出正方形的边长“既是2的倍数,又是3的倍数”,一方面概括了这些正方形边长的特点,另一方面让学生体会“既是……又是……”的意思。然后在“6、12、18、24……既是2的倍数,又是3的倍数,它们是2和3的公倍数”这句话里把“既是……又是……”进一步概括为“公倍数”,形成公倍数的概念。

集合图能直观形象地显示公倍数、公因数的含义。第23页把6的倍数与9的倍数分别写到两个集合圈里,这两个集合圈有一部分重叠,在重叠部分里写的数既是6的倍数,也是9的倍数,是6和9的公倍数。先观察这个集合图,再填写第24页的集合图,学生能进一步体会公倍数的含义。

概念的外延是指这个概念包括的一切对象。对具体事例是否属于概念作出判断,就是识别概念的外延,加强对概念的认识。例1在揭示2和3的公倍数的概念,指出它们的公倍数是6、12、18、24……后,提出“8是2和3的公倍数吗”这个问题,利用反例凸现公倍数的含义。让学生明白8只是2的倍数,不是3的倍数,从而进一步明确公倍数的概念。练习四第4题先在表格里分别写出4、5、6的倍数,再寻找4和5、5和6、4和6的公倍数,也有助于学生识别概念的外延。

3?运用数学概念,让学生探索找两个数的最小公倍数、最大公因数的方法。

本单元只教学两个数的公倍数、最小公倍数和两个数的公因数、最大公因数。因为这些是最基础的数学知识,在约分和通分时应用最多。只要这些基础知识扎实,即使遇到三个分数的通分,学生也能灵活处理。不编排例题教学短除法求最小公倍数和最大公因数,而是采用写出两个数的倍数或因数,找出它们的最小公倍数或最大公因数的方法。这样安排的目的是,在运用概念解决问题的过程中,进一步加强数学概念的教学。

例2教学求两个数的最小公倍数,出现了多种解决问题的方法,这些方法的思路都公倍数和最小公倍数的概念,从6和9的公倍数、最小公倍数的意义引发出来。学生可能先分别写出6和9的倍数,再找出它们的公倍数和最小公倍数。由于倍数需一个一个地写,还要逐个逐个地比,所以得出公倍数和最小公倍数比较慢。学生也可能在9的倍数里找6的倍数,只要依次想出9的倍数(即9×1、9×2、9×3……的积),逐一判断是不是6的倍数,操作比较方便。尤其求两个较小数(不超过10)的最小公倍数时,更能显出这种方法的优点。当然,在6的倍数里找9的倍数,也是一种方法,但没有9的倍数里找6的倍数快捷。教材安排学生在交流中体会各种方法,首先是理解各种方法的共同点,都在寻找既是6的倍数、又是9的倍数,而且是尽量小的那个数。然后是理解各种方法的个性特点,从中作己的选择。

例4求两个数的最大公因数,教学方法和例2相似。求8和12的最大公因数的几种方法中,教材呈现的第一种方法比较适宜多数学生。因为一个数的因数的个数是有限的,先写出两个数的全部因数,再找出最大公因数,操作不麻烦。第二种方法从小到大依次想较小数的因数,稍不留心就会遗漏某一个因数。练习五编排第3题的意图就在于此。

练习四第5题在初步学会求两个数的最小公倍数之后安排,两个色块分别呈现最小公倍数的两种特殊情况。左边的色块里,每组的两个数之间有倍数与因数关系,它们的最小公倍数是较大的那个数。右边的色块里,每组两个数的最小公倍数是它们的乘积。练习五第6题是初步会求两个数的最大公因数后安排的。左边色块里,每组的两个数之间也有倍数与因数的关系,它们的最大公因数是较小的那个数。右边色块里,每组两个数的最大公因数是1。这些特殊情况,在通分和约分时会经常出现。教学时可以按色块进行,先分别求出同一色块四组数的最小公倍数或最大公因数,再找出相同的特点,通过交流内化成求最小公倍数和最大公因数的技能。要注意的是,学生有倍数与因数的知识,能够理解同组两个数之间的倍数、因数关系,以及它们的最小公倍数和最大公因数的规律。由于新教材不讲互质数,也不教短除法,所以两个互质数的最小公倍数是它们的乘积、最大公因数是1,这些特殊情况,只能在具体对象中感受,不宜深入研究原因,更不要出结语让学生记忆。第9题分别写出1、2、3、4……20这些数与3、2、4、5的最大公因数,在发现有趣规律的同时,也在感受两个数的最大公因数的两种特殊情况。

因数和倍数的教案篇2

教学目标

1、知识与技能

(1)能直接在方格图上,数出相关图形的面积。

(2)能利用分割的方法,将较复杂的图形转化为简单的图形,并用较简单的方法计算面积。

2、过程与方法

(1)在解决问题的过程中,体会策略、方法的多样性。

(2)学会与人交流思维过程与结果。

3、情感态度与价值观

积极参与数学学习活动,体验数学活动充满着探索、体验数学与日常生活密切相关。

重点难点及处理问题的策略

1、重点是指导学生如何将图形进行分割,从而让学生体会到解决问题的多样性和简便性。难点是灵活运用方法。

2、借助图形,让学生动手,自主探索、合作交流解决问题的方法。

教学过程:

一、创设情境、揭示新课。

我要说班里每位同学都是优秀的设计师!因为大家都在设计着自己美好的.将来,所以在很用功的学习。希望大家继续努力,使自己美好的设计成为现实。下面我们来看一看,我们的同行——一位地毯图案设计师,设计的图案。

展示地毯上的图形,让学生仔细观察图形特点,说发现。

地毯是正方形,边长为14米蓝色部分图形是对称的,……

师:看这副地毯图,请你提出数学问题。

根据学生的回答展示问题:“地毯上蓝色部分的面积是多少?”

师板书课题:地毯上的图形面积

二、自主探索、学习新知

如果每个小方格的面积表示1平方米,,那么地毯上的图形面积是多少呢?

1、学生独立解决问题

要求学生独立思考,解决问题,怎样简便就怎样想,并把解决问题的方法记录下来。

2、小组内交流、讨论

3、班内反馈

请学生汇报蓝色部分面积,重点汇报求蓝色面积的方法。对于每一种方法,只要学生说得合理都给以肯定。

学生的答案也许有:

(1)直接一个一个地数,为了不重复,在图上编号;(数方格法)

(2)因为这个图形是对称的,所以平均分成4份,先数出一份中蓝色的面积,再乘4;(化整为零法)

(3)用总正方形面积减去白色部分的面积;(大减小法)

(4)将中间8个蓝色小正方形转移到四周兰色重叠的地方,就变成4个3×6的长方形加上4个3×3的正方形。(转移填补法)

4、学生总结求蓝色部分面积的方法。

三、巩固练习、拓展运用(课本第19页练一练)

1、第1题

(1)学生独立思考,求图1的面积。

(2)说一说计算图形面积的方法。引导学生了解“不满一格的当作半格数”。

2、第2题

独立解决后班内反馈。

3、第3题

(1)学生独立填空。求出每组图形的面积。学生完成后班内交流反馈答案。

(2)学生观察结果,说发现。

第(1)题的4个图形面积分别为1、2、3、4的平方数;第(2)题与第(1)题进行比较,第(2)题的3个图形的面积分别是前面一组题的前3个图形 面积的一半。

四、全课小结,课后拓展

今天我们进行了那些活动,你收获了什么?

师:对于计算方格图中规则图形的面积,我们可以分割,可以直接数,可以“大减小”,还可以转移填补。如果没有方格图,我们该怎样解决一些图形的面积呢?明天的数学课上我们将继续学习。课后,有兴趣的同学可以在空白方格纸上设计一些你喜欢的图案,让你的同桌帮你算一算图案的面积。

因数和倍数的教案篇3

教材分析:

以乘、除法知识拓展方式,引入对“因数与倍数”知识的学习。有利于沟通新旧知识之间的联系,分散难点,便于学生理解和掌握知识。

教学目标:

①在具体的情境中,借助乘法算式认识因数和倍数。

②掌握求一个数的因数和倍数的方法,知道一个数的因数及倍数的特点。

重点难点突破:

为了突出重点、突破难点,特设计以下三个环节进行教学:

① 以学生的贴画为素材,通过不同的贴法引出不同的乘法算式,以乘法算式引出因数

和倍数的意义。

②引导学生自主找一个数的因数,以此加深对因数的理解。

③引导学生自主找一个数的倍数,以此加深对倍数的理解。

组内教师讨论要点:

①找一个数的因数时,一定要放手,且给学生足够的时间让他们去同位之间、小组内交流,如何能快速且没有遗漏的找全。

②及时的练习巩固也是很有必要的,在多个练习的基础之上让学生发现一个数因数的'特点。

③找一个数的因数也反映出学生的口算水平的高低。

④找一个数的倍数时,以找2、3、5的倍数为主,让学生发现一个数倍数的特征。

因数和倍数的教案篇4

教学内容:

苏教版义务教科书《数学》五年级下册第30~32页例1、例2和试一试、例3和试一试练一练,第35页练习五第1~4题。

教学目标:

1.使学生认识倍数和因数,能判断两个自然数间的因数和倍数关系;学会找一个数的因数和倍数的方法,能按顺序找出100以内自然数的所有因数,10以内自然数的所有倍数;了解一个数的因数、倍数的特点。

2.使学生经历探索求一个数的因数或倍数的.方法、一个数的因数和倍数特点的过程,体会数学知识、方法的内在联系,能有条理地展开思考,培养观察、比较,以及分析、推理和抽象、概括等思维能力,发展数感。

3.使学生主动参与操作、思考、探索等活动,获得解决问题的成功感受,树立学好数学的信心,养成乐于思考、勇于探究等良好品质。

教学重点:

认识因数和倍数。

教学难点:

求一个数的因数、倍数的方法。

教学准备:

小黑板、准备12个同样大的正方形学具。

教学过程:

一、操作引入,认识意义

1.操作交流。

引导:你能用12个小正方形拼成一个长方形吗?请同桌两人合作拼一拼,看看每排摆几个,摆了几排,想想有几种拼法,用算式把你的拼法表示出来。 学生操作,用算式表示,教师巡视。

交流:你有哪些拼法?请你说一说,并交流你表示的算式。

结合学生交流,呈现不同拼法,分别板书出积是12的三道乘法算式(包括可以板书除法算式)。

2.认识意义。

(1)说明:我们先看43=12。根据43-12,我们就可以说:4和3都是12的因数;反过来,12是4的倍数,也是3的倍数。

(2)启发:现在让你看另外两个算式,你能说一说哪个是哪个的因数,哪个是哪个的倍数吗?同桌互相说说看。

(3) 小结:从上面可以看出,在整数乘法算式里,两个乘数都是积的因数,积是两个乘数的倍数。它们之间的关系是相互依存的。这就是我们今天学习的新内容:因数和倍数。(板书课题)在研究因数和倍数时,所说的数一般指不是o的自然数。

因数和倍数的教案篇5

教学内容:

?因数与倍数认识》第5页。

教学过程:

一、创设情境,引入新课

1、互为关系的辨析(以人与人之间的关系,如你和爸爸、妈妈的关系,你和老师之间的关系,存在这些关系的双方互相的.关系表示为例,辨析互为关系)

2、小结互为关系,引入课题。(板书课题:因数与倍数)

二、探究新知

(一)认识因数与倍数

1、回顾学过学过的几类数(自然数,小数,分数)

2、揭示因数与倍数的研究范围,(现在我们来研究自然数中数与数之间的关系。)

3、整除算式的辨别(给下面算式分类,并描述算式的特征)(出示课本p5例1)

4、学生自我分类,小组讨论分类结果,完善分类。

5、辨析整除的意义,自学了解因数、倍数的意义,组内交流自学成果,议一议,辨明因数与倍数。

6、全班交流,选择分类后的算式,说说什么是因数和倍数?说说谁是谁的因数,谁是谁的倍数。

7、当堂训练

(1)完成课本p5下面的“做一做”(独立说、组内互相说、全班交流说) (2)判断:课本p7 t5(1)

(二)因数和倍数的求法

1、自学课本p6例2和例3,初步了解因数与倍数的求法。

2、组内讨论因数与倍数的求法,一个数的因数与倍数的个数、一个数的最小的因数和最大的因数、一个数最小的倍数和最大的倍数。 3、全班交流上面组内交流的知识点,适时辅导,各自完善。 4、当堂训练

(1)完成练习二t1(独立练习、组内交流完善、选择性全班交流)

(2)完成练习二t5(独立判断、组内交流完善、全班交流)

三、总结与分享

与老师和同学分享你的收获与感悟。

因数和倍数的教案篇6

教学内容:教科书第25页,练习四第5~8题。

教学目标:

1、通过练习与对比,使学生发现和掌握求两个数最小公倍数的一些简捷方法,进行有条理的思考。

2、通过练习,使学生建立合理的认识结构,形成解决问题的多样策略。

3、在学生探索与交流的合作过程中,进一步发展学生与同伴合作交流的意识和能力,感受数学与生活的联系。

教学过程:

一、基本训练

1、我们已经掌握了找两个数的公倍数和最小公倍数的方法,这节课我们继续巩固这方面的知识,并能够利用这些知识解决一些实际问题。

(板书课题:公倍数和最小公倍数练习)

2、填空。

5的倍数有:( )

7的倍数有:( )

5和7的公倍数有:( )

5和7的最小公倍数是:( )

3、完成练习四第5题。

(1)理解题意,独立找出每组数的最小公倍数。

(2)汇报结果,集体评讲。

(3)观察第一组中两个数的最小公倍数,看看有什么发现?

每题中的两个数有什么特征呢?(倍数关系)可以得出什么结论?

(4)第二组中两个数的最小公倍数有什么特征?(是这两个数的乘积)

在有些情况下,两个数的最小公倍数是这两个数的乘积。

4、完成练习四第6题。

你能运用上一题的规律直接写出每题中两个数的最小公倍数吗?

交流,汇报。

说说你是怎么想的?

二、提高训练

1、完成练习四第7题。

(1)理解题意,独立完成填表。

(2)你是怎样找到这两路车第二次同时发车的时间的`?

你还有其他方法解决这个问题吗?(7和8的最小公倍数是56)

2、完成练习四第8题。

(1)理解题意。

(2)“每隔6天去一次”是指7月31日去过以后,下一次训练日期是8月6日。“每隔8天去一次”指的是什么呢?

你能说说,他们下次相遇,是在几月几日吗?(8月24日)

你是怎样知道的?

要知道他们下次相遇的日期,其实就是求什么?(6和8的最小公倍数)

三、课堂小结

通过练习,同学们又掌握了一些比较快的求两个数最小公倍数的方法,并能运用这些方法解决一些实际问题。

在小组中互相说说自己本节课的收获。

因数和倍数的教案6篇相关文章:

大班桥的教案6篇

幼儿园桥的教案最新6篇

培训后的感悟和心得6篇

小班枪的教案推荐6篇

幼儿园关于蛇的教案优质6篇

中班枪的教案优秀6篇

中班关于桥的教案参考6篇

以花为的教案优质6篇

重阳节的班会教案6篇

护理培训的心得和体会7篇

因数和倍数的教案6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
120533